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Abstract 

Using maximum entropy and likelihood, an ab initio 
phase determination was carried out in projection at ca 
6-10A resolution for two dissimilar membrane pro- 
teins: the Omp F porin from the outer membrane of 
E. coli (largely fl-sheet) and halorhodopsin (largely 
a-helix). Accurate phase information found for the most 
likely solutions enabled potential maps to be calculated 
that contained most of the essential structural details of 
these macromolecules without the need for any image, 
derived phases as a starting set for phase extension or 
the necessity to use envelopes or electron-density 
histograms. A comparison with earlier calculations 
using the Sayre-Hughes equation coupled with phase 
annealing and the Luzzati flatness criterion used as a 
figure of merit is made. 

1. Introduction 
Because of their occurrence as two-dimensional arrays 
in a phospholipid bilayer matrix, integral membrane 
proteins are most conveniently studied in the electron 
microscope. The development of electron crystallo- 
graphic procedures incorporating the processing of 
low-dose high-resolution electron micrographs from 
tilted two-dimensional crystals has become a standard 
technique for determining their structures (Amos, 
Henderson & Unwin, 1982). Nevertheless, as the 
resolution of the determination is increased, reliance 
on experimental images as a sole source of crystal- 
lographic phases for the electron diffraction amplitudes 
becomes more and more of an experimental challenge 
(Henderson, Baldwin, Downing, Lepault & Zemlin, 
1986). Firstly, at the highest resolutions, more sampled 
pixels are needed to resolve a detail between two points. 
Even though averaging over the repeat of the two- 
dimensional space lattice can be used to minimize the 
actual radiation dose to the specimen when recording 
the image, the damage induced by inelastic interactions 
between electron and sample can be problematic 
(Henderson & Glaeser, 1985). Secondly, many such 
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two-dimensional crystals contain a curvilinear para- 
crystalline distortion, probably because of the lipid 
matrix in which the proteins are embedded. Thus, 
somewhat paradoxically, although the observed electron 
diffraction pattern might extend to e.g. 3 tk, the Fourier 
transform of a micrograph from a similar area may 
vanish somewhere in the range from 10 to 6 A. Lattice 
'unbending' has been used to restore the higher- 
resolution information (Henderson, Baldwin, Downing, 
Lepault & Zemlin, 1986) but the actual amount of 
artefact involved is not known. Lastly, there are slight 
variations of specimen height from the perspective of 
the microscope objective lens. Although a nearby 
correction can be made locally for the lens focus before 
the low-dose image is recorded, the actual transfer 
function of the micrograph is often unknown. Small 
deviations can be critical at higher spatial frequencies, 
affecting rather narrow neighbouring bands of recipro- 
cal space by the rapid change of contrast. 

The use of lower-resolution images, which can most 
easily be recorded in the electron microscope, as the 
source of crystallographic phases may be a convenient 
starting point for actual direct phase extensions to 
higher resolution. This concept was used by Gilmore, 
Shankland & Fryer (1993), who demonstrated that 15 A 
resolution image-derived phases from bacteriorhodop- 
sin can be extended by maximum entropy and likelihood 
procedures to the diffraction limit to produce potential 
maps closely resembling those derived solely from high- 
resolution images. The generality of this approach was 
demonstrated later when convolutional phase-extension 
procedures employing the Sayre equation were used 
successfully for the proteins bacteriorhodopsin, halo- 
rhodopsin and the Omp F porin from the outer 
membrane of E. coli (Dorset, Kopp, Fryer & Tivol, 
1995; Dorset, 1996). 

During the course of these investigations, the 
possibility of true ab ini~O phase determination, in 
which it was assumed that no image information was 
available, was also explored for the first time (Dorset, 
1995, 1996) and the Sayre equation in a multisolution 
environment, followed by phase annealing, was found 
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to produce useful results for the centrosymmetric 
projection of halorhodopsin (Havelka, Henderson, 
Heymann & Oesterhelt, 1993) to 6 A. While the phase 
accuracy was not so great as found earlier in the phase- 
extension experiments, the essential features of the 
protein could be identified, i.e. the presence of an 
a-helix bundle similar to that found for bacteriorho- 
doi~sin (Henderson, Baldwin, Downing, Lepault & 
Zemlin, 1986). Attempts to solve the Omp F porin 
structure by this method were less successful, however, 
because the criterion of density 'flatness' (Luzzati, 
Mariani & Delacroix, 1988), employed as a figure of 
merit for the annealing step (Dorset, 1995), was not 
very useful in this case, even though the concept of this 
density constraint should be quite correct for this 
resolution range. 

In X-ray crystallography, there is an extensive 
literature concerning ab initio phasing at low resolution. 
For example, Subbiah (1993) has developed a metho- 
dology based on the packing and diffraction of hard- 
sphere point scatterers to generate protein envelopes. 
Carter, Crumley, Coleman, Hage & Bricogne (1990) 
have used X-ray contrast variation to define the 
envelope of Bacillus stearothermophilus at 18A by 
phasing the envelope structure factors using the 
MITHRIL computer program (Gilmore, 1984; Gilmore 
& Brown, 1988). Lunin, Lunina, Petrova, Vernoslova, 
Urzhumtsev & Podjarny (1995) have determined 
envelopes at very low resolution (ca 50 A) using pseudo 
atoms, not unlike those of Subbiah, but in addition 
employing the use of electron-density histograms. 

The maximum entropy (ME) and likelihood approach 
to phase extension in electron crystallography has 
proven to be somewhat more robust for phase prediction 
than the Sayre equation, especially since the starting 
point (e.g. for bacteriorhodops'm) could be constrained 
to a lower resolution (15 vs 10 A) (Gilmore, Shankland 
& Fryer, 1993; Dorset, Kopp, Fryer & Tivol, 1995). 
Additionally, Roth (1991) has used the MICE maximum 
entropy program to study the Rhodobacter sphaeroides 
reaction center and Schluenzen, Volkmann, Thygesen, 
Hansen, Harms, Bennett & Yonath (1994) have used the 
same program to study ribosome data at 20 A resolu- 
tion. From these results, it seems logical to attempt ab 
initio phasing on membrane data using ME methods 
and, in this paper, we describe how the procedure 
successfully overcomes some of the difficulties experi- 
enced with the Sayre equation when the true ab initio 
phase determinations are attempted even when working 
in two dimensions with projection data. 

2. Data sets and their processing 

Electron crystallographic data from two membrane 
proteins were used for these calculations, testing two 
extremes of inherent secondary structure: the Omp F 
porin from the outer membrane of E. coli, which is 

Table 1. Reflection number, h, k, the unitary structure 
factor [ U h I °bs and d in A for Omp F porin 

An asterisk (*) signifies a centric reflection with a phase constrained to 
be 0 or rr; all the untagged reflections are acentric with unrestricted 
phases. All reflections are structure seminvariants. 

No. h k ]Uhl °bs d (A) No. h k ]Uh] °bs d (,h,) 

1 5 0 0.10330 12.5" 22 7 -1  0.01812 9.5 
2 4 - 2  0.06775 18.0 23 10 - 5  0.01730 7.2 
3 6 - 3  0.05809 12.0 24 9 - 4  0.01650 8.0 
4 4 0 0.04797 15.6" 25 10 - 2  0.01465 6.8 
5 5 - 2  0.04424 14.3 26 10 - 3  0.01438 7.0 
6 8 - 4  0.04341 9.0 27 9 - 2  0.01411 7.6 
7 5 -1  0.04154 13.6 28 4 -1  0.01262 17.3 
8 3 0 0.04115 20.8* 29 11 --5 0.01185 6.5 
9 6 - 2  0.03350 11.8 30 9 0 0.01049 6.9* 

10 2 0 0.03275 31.2" 31 10 0 0.00861 6.2* 
11 7 - 3  0.03104 10.2" 32 8 0 0.00722 7.8* 
12 7 - 2  0.02619 10.0 33 9 -1  0.00719 7.3 
13 3 -1  0.02552 23.6 34 10 - 4  0.00702 7.1 
14 7 0 0.02456 8.9* 35 12 --6 0.00617 6.0 
15 9 - 3  0.02383 7.9 36 11 --1 0.00616 5.9 
16 2 -1  0.02363 36.0 37 10 --1 0.00612 6.5 
17 8 - 3  0.02313 8.9 38 6 0 0.00467 10.4" 
18 11 - 4  0.02217 6.5 39 12 - 4  0.00433 5.9 
19 8 - 2  0.02135 8.6 40 11 - 2  0.00400 6.1 
20 6 -1  0.02075 11.2 41 11 --3 0.00349 6.3 
21 8 -1  0.01857 8.3 42 1 0 0.00342 62.3* 

largely r-sheet, and halorhodopsin, which is predomi- 
nantly c~-helix. 

2.1. Omp F porin 

The structure of Omp F porin from the outer 
membrane of Escherichia coli (MW 36500 Daltons) 
was determined by image analysis to 3.2 A resolution by 
Sass, Bfildt, Beckmann, Zemlin, van Heel, Zeitler, 
Rosenbusch, Dorset & Massalski (1989). Originally, 
data had been obtained at 100kV from glucose- 
embedded samples on a liquid-helium-cooled super- 
conducting cryomicroscope with the specimen held at 
5K. Amplitudes and phases from an image of a 
bimembrane stack were obtained from Dr J. Sass and 
used as the parent data set for this protein. Since most of 
the diffracted power was contained within a 6,~ limit 
(Dorset, 1996), the data resolution was not explored 
beyond this boundary, so that there were 42 unique 
reflections in the data set considered. The plane group 
of the projection is p31m and the hexagonal unit-cell 
cottstant is a = 72 A. 

The data were normalized using MITHRIL (Gilmore, 
1984; Gilmore & Brown, 1988) with an imposed overall 
isotropic temperature factor of zero and using electron 
scattering factors. Any attempt to derive a temperature 
factor using Wilson methods (Wilson, 1949) produced 
overall temperature factors of about 300,~2 because of 
the dominance of very low resolution intensities, the 
paucity of data and its overall resolution. Table 1 lists 
the normalized data along with the reflection resolution. 
The maximum data resolution is 5.9 ,h, but the effective 
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resolution, defined by the limit for which IEI > 1.0, is 
about 9A. Those reflections with a higher resolution 
that this all have weak amplitudes and will be difficult to 
phase by any direct method. 

2.2. Halorhodopsin 

Electron diffraction amplitudes and electron-micro- 
graph-derived crystallographic phases from halorho- 
dopsin to 6A resolution were reported by Havelka, 
Henderson, Heymann & Oesterhelt (1993). Original 
experiments were carried out at 120kV on frozen- 
hydrated samples. The centrosymmetric tetragonal 
plane group is p4gm with lattice constant a = 102 A. 
Within the 6 A resolution limit, this corresponds to 76 
unique reflections. The data were normalized as for the 
porin, again with an imposed overall temperature factor 
of zero, and are listed in Table 2. Although the data 
have a nominal 6A resolution, there are only 16 
reflections with a resolution better than 8,h, and these 
are all weak with a maximum U magnitude of 0.012, 
which corresponds to an E magnitude of < 0.5. The 
effective resolution of the data from the viewpoint of 
direct methods is around 10A: those reflections with 
IEI > 1.0 have a maximum resolution of 9.8,h,. This 
will also have consequences for direct phasing, which 
will be discussed in the next section. 

3. Phase determination 

3.1. The ME method 

The technique used here is that of multisolution 
constrained entropy maximization combined with like- 
lihood evaluation as a source of selecting the most 
probable phase choices. The theory comes from 
Bricogne (1984, 1988a,b, 1993) as implemented in 
the MICE computer program (Gilmore, Bricogne & 
Bannister, 1990; Bricogne & Gilmore, 1990; Shank- 
land, Gilmore, Bricogne & Hashizume, 1993; Gilmore, 
Shankland & Bricogne, 1993; Gilmore, 1996). For 
recent-applications to small-molecule electron dif- 
fraction data sets, see Voigt-Martin, Yan, Gilmore, 
Shankland & Bricogne (1994) and Voigt-Martin, Yan, 
Yakimansky, Schollmeyer, Gilmore & Bricogne 
(1995), and for phase extension applied to membrane 
proteins, see Gilmore, Shankland & Fryer (1993). The 
methods described in these references closely match the 
procedures used here with only small resolution-based 
differences; however, for completeness, a brief over- 
view of the formalism is presented here: 

(i) The diffraction intensities are normalized to give 
unitary structure factors, I Uhl TM and their associated 
standard deviations tr h. 

(ii) The observed U magnitudes are partitioned into 
two sets: the basis set H -  {h 1, h 2 . . . . .  h,} comprises 
the reflections for which reliable phase information 
t~---{qgl,  92 . . . . .  qgn} for n reflections is available. In 

Table 2. Reflection number, h, k, the unitary structure 
factor I Uhl °bs and d in A for halorhodopsin 

All reflections are centric with phases constrained to be 0 or Jr. 

No. h k I Uhl °bs d (lk) No. h k I Uhl °~ d (A) 

1 2 2 0.17185 36.1 39 11 5 0.01247 8.4 
2 2 0 0.14390 51.0 40 11 8 0.01242 7.5 
3 1 1 0.11227 72.1 41 10 0 0.01222 10.2 
4 3 3 0.10488 24.0 42 9 1 0.01198 11.3 
5 3 1 0.07983 32.3 43 8 5 0.01140 10.8 
6 6 5 0.07672 13.1 44 6 2 0.01104 16.1 
7 6 3 0.06466 15.2 45 7 5 0.01094 11.9 
8 8 0 0.05879 12.8 46 8 7 0.01057 9.6 
9 8 1 0.04851 12.7 47 14 1 0.01033 7.3 

10 2 1 0.04610 45.6 48 4 4 0.01030 18.0 
11 5 5 0.04589 14.4 49 6 6 0.01028 12.0 
12 7 4 0.04536 12.6 50 10 5 0.00986 9.1 
13 10 3 0.04465 9.8 51 9 4 0.00975 10.4 
14 6 0 0.04013 17.0 52 8 8 0.00953 9.0 
15 3 2 0.03410 28.3 53 8 6 0.00808 10.2 
16 4 3 0.03335 20.4 54 7 2 0.00792 14.0 
17 4 1 0.03215 24.7 55 13 3 0.00760 7.6 
18 6 4 0.03006 14.1 56 13 4 0.00718 7.5 
19 7 6 0.03005 11.1 57 10 4 0.00642 9.5 
20 10 2 0.02928 10.0 58 12 7 0.00642 7.3 
21 9 5 0.02862 9.9 59 12 4 0.00604 8.1 
22 5 1 0.02854 20.0 60 11 3 0.00587 8.9 
23 5 2 0.02774 18.9 61 9 7 0.00569 8.9 
24 6 1 0.02692 16.8 62 10 9 0.00562 7.6 
25 4 2 0.02474 22.8 63 10 6 0.00555 8.7 
26 8 3 0.02155 11.9 64 4 0 0.00494 25.5 
27 5 4 0.02146 15.9 65 11 7 0.00445 7.8 
28 8 2 0.02023 12.4 66 15 8 0.00444 6.0 
29 10 7 0.01990 8.4 67 11 1 0.00353 9.2 
30 7 1 0.01888 14.4 68 13 5 0.00306 7.3 
31 11 2 0.01877 9.1 69 15 2 0.00276 6.7 
32 7 7 0.01869 10.3 70 9 8 0.00267 8.5 
33 5 3 0.01795 17.5 71 13 8 0.00257 6.7 
34 8 4 0.01556 11.4 72 13 1 0.00256 7.8 
35 11 6 0.01535 8.1 73 14 7 0.00218 6.5 
36 12 0 0.01453 8.5 74 14 5 0.00216 6.9 
37 9 3 0.01404 10.7 75 13 9 0.00215 6.4 
38 9 2 0.01344 11.1 76 14 0 0.00208 7.3 

this case, {H} comprises only the origin-defining 
reflections (where any exist) with their associated 
phases. The set {H} defines the root node of a phasing 
tree. The disjoint set {K} comprises the remaining 
unphased reflections. 

(iii) The basis set reflections (both phase and 
amplitude) are used as constraints in an entropy 
maximization to give a maximum entropy distribution 
qME(x), which reproduces the intensities and phases of 
the basis set but also has Fourier coefficients U~ E with 
non-negligible amplitude for many non-basis set reflec- 
tions. This is the process of maximum entropy 
extrapolation. 

(iv) Initially, the extrapolation is usually too weak to 
be of any value, so new phase information is incor- 
porated into the basis set by adding strong reflections, 
which are hitherto inconclusively extrapolated and 
which optimally enlarge the second neighbourhood of 
the current basis set. (The second neighbourhood is 
defined by reflections h 1 ± t R g - h 2  f o r  h l , h  2 E H ,  
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where tRg is the transpose of a rotation matrix obtained 
from the crystal space group.) Since the phases of these 
new reflections are unknown, this gives rise to series of 
phase choices in which each centric reflection is given 
both of its possible values (e.g. 0, Jr or +zr/2) and each 
acentric reflection is quadrant fixed using the choices 
+zr/4, +3rr/4. Each phase choice is represented as a 
node on the second level of the phasing tree. If there are 
n c centric phases and n a acentric phases to be added to 
the basis set, this will generate 2nc4 na nodes. 

(v) Each node on the tree is now subjected to 
constrained entropy maximiTation just as before. To 
rank the nodes, hopefully in order of phase error, a 
Rice-type likelihood function is used, which evaluates 
the agreement between the extrapolated structure-factor 
magnitudes from the relevant maximum entropy 
distribution and the experimentally measured ones. 
The log-likelihood gain (LLG) will be largest when the 
phase assumptions for the basis set lead to predictions of 
deviations from the Wilson distribution in the unphased 
reflections, which in turn mirror the measured 
intensities, and in this context the LLG is used as a 
powerful figure of merit (Bricogne, 1984, 1993; 
Bricogne & Gilmore, 1990; Gilmore, Bricogne & 
Bannister, 1990). 

(vi) The LLGs are analysed for phase relationships 
using the Student t test, which defines the level of 
significance in the contrast between two means (Shank- 
land, Gilmore, Bricogne & Hashizume, 1993). The 
simplest t test involves the detection of the main effect 
associated with the sign of each single centric phase that 
has been permuted. The LLG average, /z +, and its 
associated variance V + is computed for those nodes in 
which the sign of the phase under test is +.  The 
calculatio~n is then repeated for those nodes in which the 
same sign is - to give the corresponding /z-, and 
variance V-. The t statistic is then 

(a) The one-, two- and three-phase relationships are 
derived from the t test, and given an associated weight 
proportional to their significance level. 

(b) Each node is assigned a score related to the 
measure of agreement between the phase relationships 
weighted by the associated significance levels from (a) 
and the phases in the set itself. 

(c) The eight sets from (b) having the highest scores 
are kept. Alternatively, the phase relationships from the 
t tests can be used to determine unique phases for one or 
more basis set reflections and a new phasing tree is 
started using these values. 

(viii) The tree building and pruning procedure is 
continued until most large unitary structure factors have 
significant phase indications. Potential maps are gener- 
ated as centroid maps by means of a Sim-type filter in 
which each reflection is given a coefficient IUhl °bs, a 
phase from U ME and an associated weight Wh (Bricogne 
& Gilmore, 1990) computed as follows: 

w h = tanh(N/ehlUhl°bSlu~tEI) for h centric (2) 

wh = Ii(Xh)/Io(Xh) for h acentric, (3) 

where 

X h --~ (N/eh)[Uhl°bsluMEI, (4) 

N is the number of atoms in the unit cell and e h is the 
statistical weight. 

In practice, for both structures presented here, the 
procedures used were quite automatic; the only user 
decisions were the resolution limit to use and the 
number of nodes to generate. Variations of these 
parameters still produced good phase sets so that the 
results are not unduly sensitive to initial phase choices. 
The total computer time involved was less than one hour 
on a 15 processor workstation network for both 
structures. 

t = I/z + - t z - I / (V + + v-)  1/2. (1) 

The use of the t test enables a sign choice to be derived 
with an associated significance level. This calculation is 
repeated for all the single-phase indications and is then 
extended to combinations of two and three phases. A 
further extension to acentric phases is straightforward 
by employing two signs to define the phase quadrant. In 
general, only relationships with associated significance 
levels <2-10% are used but this is sometimes relaxed 
with sparse data sets. 

(vii) The phase relationships obtained from the t test 
are used to identify the best nodes (in the sense of 
minimum phase error). The optimum method for this is 
a high-dimensional Fourier transform as used in the 
B U S I E R  program (Bricogne, 1993), which exploits the 
periodicity of phase angles and their phase relation- 
ships. Here we employ a simpler, but effective, 
algorithm: 

3.2. Omp F p o r i n  

In the plane group p31m, all the reflections are 
structure seminvariants and the group defines the origin. 
Also, all reflections except the (h0) are acentric. To 
commence phasing, the top five centric reflections were 
given permuted phases so generating 32 nodes, each of 
which was subjected to entropy maximization. Analysis 
of the LLG gave unambiguous phase assignments for 
three of these, of which the indication for reflection 1 
(50) (= ~r) was the strongest. All three indications were 
correct; this is in sharp contrast with the use of the 
traditional E l formula in MITHRIL ,  where two of the 
three phases were incorrectly predicted. Accordingly, a 
new starting point was defined by fixing the phase of 
reflection (50) (I u~bsl = 0.103) with an angle of zr. This 
single phased reflection comprised the basis set for the 
root node of a phasing tree. Three reflections were then 
selected for phase permutation via the algorithm of 
optimum second-neighbourhood enhancement (Bri- 
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cogne, 1993; Giln3_ore, _Bricogne & Bannister, 1990). 
These were the (42), (63) and (40) with corresponding 
U magnitudes of 0.068, 0.058 and 0.048, respectively. 
The first two reflections are acentric and were given 
permuted phases of 4-n-/4,-4-3zr/4 while the latter is 
centric and was given the values 0 or ~r, thus generating 
32 nodes, each of which was subjected to constrained 
entropy maximization. The basis set resolution at this 
poifit was 12 A. The LLGs were subjected to statistical 
analysis and scoring as described above. Three nodes 
29, 31 and 32 had scores much higher than any other 
phase sets and thus survived the analysis; they had 
corresponding basis set phase errors of 13, 49 and 27 ° 
with LLGs of 0.023, 0.007 and 0.033, respectively. It is 
not possible to choose between these nodes on the 
grounds of LLG or score alone, although node 31 is less 
strongly indicated and each bifurcation of the phasing 
process that these represent must be followed. Fig. 1 (a) 
shows the potential map for the node having a mean 
phase error of 13 ° . Even at this stage with only four 
unique reflections in the basis set, the molecular outline 
is quite clear. The correlation coefficient using as 
coefficients u~bswh and U~h E to the full resolution of the 
data was 0.93. 

Thus, all three surviving nodes were kept and the 
phase-determination process was continued for two 
further levels of the phasing tree, extending the 
resolution limit to 9~,,, as summarized in Table 3. 
At this stage, the preferred potential map is shown in 
Fig. l(b) and the true map using the image-derived 
phases of Sass et al. (1989) is shown for comparison 
purposes in Fig. l(c). At this resolution, the preferred 
map has a basis set mean absolute phase error of only 
9 ° . With only minor details, there is an essential 
correspondence with this map and one computed with 
all correct angles from the image data with a 
correlation coefficient of 0.94. Extension to 6]k via 
level 5 of the phasing tree resulted in increased phase 
errors - the best solution now had an error of 23 ° but 
the maps were substantially correct, with no important 
extra detail appearing when compared to Fig. l(c); 
there was merely an increase in the number of contour 
levels. This is not surprising given the weak 
amplitudes of the 6,h, data and the corresponding 
difficulties in phasing them. 

3.3. Halorhodopsin 

Surprisingly, because it is a centric projection, 
halorhodopsin was more difficult to phase accurately 
than the porin. Two methods were used each with 
complementary strengths: 

(i) An origin was first defined by fixing the phase of 
the (21) reflection (IU~bsl = 0.172) with a phase angle 
of 0 °. This was chose_n to match that of the published 
structure and it comprised the basis set for the root node 
of the phasing tree. One reflection is sufficient to 

defined the origin for this plane group. Six reflections 
with a maximum resolution of 15 A were then selected 
for phase permutation. These are listed in Table 4. All 
the reflections are centric and so were given the phase 
values 0 or Jr, thus generating 2 6 . -  64 nodes. As 
before, each node was subjected to entropy maximiza- 
tion and its corresponding LLG evaluated. Those eight 
nodes with the maximum scores were kept; the one with 
the third highest LLG had a corresponding basis set 
phase error of 0 °. The centroid potential map corre- 
sponding to this node is shown in Fig. 2(a); it has a 

.E 

' 0 

• ' • x • . 2 t 0  

(a) 

2 0  

. .  1 ' . 2  ~ ' . 6  2 ' . 0  

(b) 

Y 

(c) 

Fig. 1. Centroid maps for Omp F porin: (a) based on a basis set of 
four unique reflections with a mean phase error of 13 ° at 12A and a 
correlation coefficient of 0.93; (b) based on ten basis set reflections 
with a mean phase error of 9 ° at 9 A and a correlation coefficient of 
0.94; (c) a true map based on image-derived phases. 
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Level 
1 
2 

Permute 
(or fix) 
(5 o) 
(4 -2) 
(6 -3) 
(4 o) 

(5 -1) 
(3 o) 
(6 -2) 
(2 o) 

(5 -2) 
(8 -4) 

(7 0) 
(2 -1) 
(11 -4) 

Table 3. The phasing tree for Omp F porin 

Mean phase 
Number of nodes errors of Map 

Number of nodes kept after nodes kept correlation 
generated analysis (°) coefficients 

1 1 0 
32 3 13 0.95 

49 0.53 
32 0.79 

64 x 3 6 25 0.81 
18 0.85 
9 0.93 

56 0.45 
40 0.55 
26 0.78 

16 x 6 8 30 0.76 
38 0.71 
45 0.65 
24 0.80 
16 0.87 
31 0.76 
17 0.88 
9 0.94 

32 × 8 8 51 0.65 
57 0.59 
32 0.80 
23 0.87 
29 0.84 
27 0.85 
26 0.86 
23 0.87 

Notes 

12 A 
resolution, 
best solution 
ranked second 
12A 
resolution 

9,/~ resolution 

6 ,~, resolution 

Level 

1 
2 

3 

Table 4. The phasing tree for halorhodopsin 

Mean phase 
Number of nodes errors of Map 

Number of nodes kept after nodes kept correlation 
Permute generated analysis (°) coefficients Notes 

(2 1) 1 1 0 Origin 
(2 2) 64 8 27 0.79 15 A 
(2 0) 24 0.17 resolution, 
(1 1) 10 0.91 best solution 
(3 3) 67 0.26 ranked third 
(6 3) 17 0.83 
(6 0) 74 0.22 

0 0.96 
7 0.32 

(6 5) 32 × 8 8 41 0.66 11 
(8 0) 39 0.75 resolution, 
(8 1) 50 0.70 best solution 
(5 5) 32 0.74 ranked second 
(6 4) 43 0.69 

21 0.82 
31 0.79 
65 0.28 

correlat ion coefficient, as defined in the previous 
section, of  0.91. The phasing process was continued 
for another level extending the resolution to 11 A, as 
summarized in Table 2, by  permuting the phases of  five 
further reflections. The best potential  map obtained 
from this approach is shown in Fig. 2(b); it is ranked 
second in terms of  L L G  and has a mean  phase error  of 
21 ° with a correlat ion coefficient of  0.82. For  
comparison,  the true map using the image-der ived 

phases of  Havelka  et al. (1993) is shown in Fig.  2(c). 
Attempts to increase the resolution to 6 ,~ were only 
part ia l ly  successful because the reflections that we 
wished to phase had such low U magnitudes.  Mean  basis 
set phase errors increased to 23 ° for the preferred node 
and the corresponding maps were much poorer  in 
quality, showing less accurate detail than those at 11 ,~, 
al though the gross features of  the structure were still 
present.  
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Fig. 2. Centroid maps for halorhodopsin: (a) based on a basis set of  7 unique reflections with a mean phase error oflY' at 15A,  the correlation 
coefficient is 0.9; (b) based on 12 basis set reflections with a mean phase error of  21 ° at 11 A, the correlation coefficient is 0.82; (c) a true map 
based on image-derived phases; (d) based on a basis set of  8 unique reflections with a mean p.hase error of  0 ° at 15 ,~,,the correlation coefficiem 
is 0.97; (e) based on a basis set of  16 unique reflections with a mean pl~.se error of  11 ° at 15 A, the correlation coefficient is 0.90; ( f )  based on 
a basis set of  28 unique reflections with a mean phase error of  9 ° at 6 A ,  the correlation coefficient is 0.87. The crosses mark the positions of  
the helices (from Havelka, Henderson, Heymann & Osterhelt, 1993). 
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(ii) As an alternative approach, the origin was left 
undefined initially, and eight reflections with a maximum 
resolution of 15 A were given permuted phases. This 
generated 256 nodes. Analysis of the associated LLGs 
using the t test gave unambiguous and correct single 
pha~e indications for six of these reflections, all of 
which were structure seminvariants. In addition, the 
phase of reflection 6, 9(6), was indicated to be 
zr + 9(7). Fixing the origin by setting rp(6)= zr to 
match the correct structure resulted in defining 9(7) 
also. At this point, eight reflections were uniquely 
phased and the associated centroid map is shown in Fig. 
2(d). The correlation coefficient at this point was 0.97. 
These phases were used to define the root node of a new 
phasing tree. A further eight reflections in the resolution 
range 6--10A were now permuted. The lowest U 
magnitude in this set was 0.006. This corresponds to 
an E of 0.24, which is a magnitude normally 
inaccessible to routine direct methods. From LLG 
analysis, all eight reflections were unambiguously 
phased and of these only one was wrong. The 
corresponding map is shown in Fig. 2(e). 

At this point, there was sufficient detail in the 
centroid map to make use of the P(~Sq) function 
(Bricogne, 1984; Gilmore, Bricogne & Bannister, 
1990). Although the method is described in detail in 
these two references, some discussion concerning its 
use may be helpful. P(3q) can be used with any 
maximum entropy map qME(X). A set of reflections is 
chosen using the standard criteria and their phases 
permuted. Each phase permutation gives rise to a 
difference map 8q(x), which is a Fourier synthesis using 
the coefficients U~ bs - U ME, where U i ~  is the Fourier 
coefficient of qME(x). P(Sq) is calculated for each phase 
permutation from 

f [3q2(x)/qME(x)] d3x. (5) 
V 

A minimum value of P(Sq) is expected for the correct 
phase set. This technique has several useful features: 

(a) Each phase permutation requires only one Fourier 
synthesis and a map division and so is very fast, 
although computer time is not a problem with these 
data. 

(b) It acts as a pre-filter for entropy maximization; the 
reflections to be permuted are first subjected to this filter 
and only those with a certain minimum P(Sq) (typically 
10-25%) are passed on for entropy maximization. 

(c) The likelihood function uses only moduli, but 
P(Sq) incorporates phases into the calculation. It 
therefore acts as a useful tool in exploring structure- 
factor space from the current node. 

The technique preferentially selects those phases that 
build density where it is already well defined. This is 
very appropriate in this situation where we have a clear 
envelope. It does, however, need to be used with care. 
In particular, qME(x) must have developed sufficient 

detail. Those qME(x) maps based on a very small basis 
sets or utilizing only small U magnitudes may have 
insufficient contrast for its successful use. In this case, 
one obtains a set of P(Sq) values that are virtually 
constant. It is also advantageous to choose reflections 
for which there is a small but finite extrapolated 
magnitude from the current qME(x). 

A set of 12 reflections in the resolution range 6-15 
were selected, giving rise to 4096 phase sets, each of 
which was filtered via P(Sq). The 100 phase sets with 
the lowest values of P(3q) were kept and passed on to 
entropy maximization. The best eight nodes based on 
LLG estimates were kept. The centroid map corre- 
sponding to the best of these is shown in Fig. 2(f) .  The 
basis set reflections have a mean phase error of 9 ° for 
28 reflections and a correlation coefficient of 0.90. 
Attempts to phase beyond this point were as unsuccess- 
ful as in (i). 

4. Discussion 

The results of Omp F porin are impressive and have 
surprised even the authors: after four levels of a phasing 
tree with basis set phases extending to 9.g,, there are 
eight nodes that survive likelihood analysis. One of 
these has a U-weighted mean absolute phase error of 
only 9°; the corresponding map is shown in Fig. l(b) 
and comparison with the true map is really striking, as 
is to be expected with a correlation coefficient of 0.94. 
When one considers that this is an ab initio phasing of a 
membrane protein from electron crystallographic data 
in projection, this is a remarkable result. 

There was a similar, if not so pronounced, success 
with the halorhodospin data set. At 15 A, an envelope is 
found that strongly resembles the one found earlier in 
the multisolution investigation by Dorset (1995). 
Extension to higher resolution was also found to 
produce maps where most of the features of the or- 
helix bundle could be discerned, although some detail 
was still obscure when compared with the true map; in 
particular, the envelope area is rather smaller than 
expected and, whereas most of the density in the best 
maps is in the correct places, it can have false weights. 
The positions of four of the helices are unambiguously 
indicated, whilst the remainder are in regions of high 
density but unresolved. The development of further 
detail requires further phasing of very small U 
magnitudes, which will always be difficult. 

Comparison of the ME approach with the method- 
ology developed by Dorset (1995, 1996) is interesting. 
The latter uses the Sayre-Hughes equation for phase 
extension from a small starting set, coupled with phase 
annealing to refine phases and the Luzzati et al. (1988) 
flatness criterion of minimum (Ap 4) as a figure of 
merit. For the case of halorhodopsin, this method 
yielded a basis set of 20 strong reflections at 15 ,At, of 
which 6 were incorrect (this corresponds to a mean 
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phase error of 54 °) and, at 10 ,~,, 6 were wrong out of 23 
(a mean phase error of 46°). It is clear that the ME- 
likelihood formalism is working better, but the use of 
phase annealing does allow incorrect phases to be 
refined. This is currently rather difficult and unreliable 
in the ME-likelihood approach as presented here. In 
terms of map quality, which must always be the final 
arbiter, the two methods produce maps that are not too 
dissimilar, although the centroid maps have a larger 
dynamic range. 

At this point, the use of entropy as a figure of merit 
needs discussion. As with all the ME ab initio structure 
determinations we have carried out (see, for example, 
Gilmore, Bricogne & Bannister, 1990; Gilmore, 1996), 
entropy, S, was a poor indicator of phase correctness 
for both structures. This is not surprising: the true role 
of entropy in this probabilistic context is, to quote 
Bricogne (1984), 'a quantitative measure of the extent 
to which the range of structures which can be generated 
with any likelihood can be narrowed down'. It can be 
used as a measure of map flatness or dynamic range but 
entropy is calculated from the maximum entropy map, 
qME(x), not the potential map itself and, furthermore, 
there is no reason why the correct structure should 
exhibit an entropy maximum, except perhaps at very 
low resolution; quite often, the correct phase set has an 
entropy minimum rather than a maximum. 

The Bayesian score NS + LLG, which can be used as 
a composite figure of merit instead of likelihood for 
individual nodes was equally recalcitrant. In this case, 
there are two problems both concerned with N: 

(i) The definition of N itself: in this work, it is usually 
taken to be the number of atoms in the unit cell, 
although it can be treated as a refinable parameter and 
optimized via likelihood. However, the accurate defini- 
tion of N at 6/k is difficult. 

(ii) N itself is critical: if it is too large, the entropy 
measure swamps the LLG and, if it is too small, the 
entropy does not make a Significant contribution to the 
Bayesian score. 

In our experience, NS + LLG is much more useful in 
cases where a large, albeit approximate, basis set is 
available from, for example, MIR phases in X-ray 
protein crystallography. 

The use of the Luzzati criterion is not unrelated to 
using entropy as a figure of merit and, as discussed in 
the previous paragraph, entropy is at best only suitable 
as a secondary indicator in ab initio studies, and so the 
Luzzati test could be unreliable. In view of the 
comments concerning entropy, why does it work at 
all? 

(i) The Luzzati criterion is applied to potential maps 
where negative pixels can be present, not maximum 
entropy ones where positivity is imposed. 

(ii) It is applied at very low resolution where the 
flatness of a potential map can discriminate between 
possible phase choices. 

(iii) It is a different function to entropy (minimum 
(zap 4) as against maximum - E i  Pi logpi). 

In the case of the porin, the ME formalism produces 
much lower phase errors and more accurate maps than 
the Luzzati-annealing method. In this case, all the nodes 
on the phasing tree have very similar entropies, which 
would indicate that the Luzzatti criterion is an 
insensitive figure of merit here, which is born out by 
the results. However, phase annealing may prove to be 
a very useful adjunct to the ME-likelihood method and 
this needs to be tested in this context. Why the porin 
should be easier to solve is not clear - it could reflect 
exploitation of the threefold axis by the membrane 
molecule or simply good luck; data quality is unlikely to 
be the reason. 

Although the inherent capability of electron-micro- 
graphic techniques for providing high-resolution images 
of a crystalline object is an advantage not enjoyed in any 
other branch of crystallography, it is, nevertheless, 
important to consider what can be achieved if only 
diffraction data are available. For example, before these 
trial experiments on representative membrane protein 
data sets, it was not known that phase determination 
could be so effective at such low resolutions. This is 
because, in X-ray crystallography, much of the two- 
angle intensity data needed for definition of the 
molecular envelope often are simply not recorded due, 
for example, to geometrical limitations imposed by the 
apparatus. Carter et al. (1990) and Fan, Hao & 
Woolfson (1991) have mentioned, however, that, 
since most of the diffracted energy from protein crystals 
is contained at low resolution, the phase relationships 
between these low-angle reflections should not be any 
less valid than those, for example, from small 
molecules, even though there are fewer interactions 
than would be found at atomic resolution. Phase 
extensions at low angle (Gilmore, Shankland & Fryer, 
1993; Dorset, Kopp, Fryer & Tivol, 1995; Dorset, 
1996), therefore, have proven to be quite effective, 
yielding results with accuracy quite consistent with the 
findings of earlier low-resolution extensions with X-ray 
data (Reeke & Lipscomb, 1969; Podjarny, Schevitz & 
Sigler, 1981). In agreement with previous observations, 
therefore, there appear to be two regions of the 
diffraction pattern from proteins equally amenable to 
phase determination, i.e. at very high and very low 
resolutions [see Weeks, Hauptman, Smith, Blessing, 
Teeter & Miller (1995) for the former case]. The 
criteria for finding a correct structure correspond, 
respectively, to the Cochran (1952) condition for 
'peakiness' or the exact opposite of density flatness or 
smoothness (Luzzati, Mariani & Delacroix, 1988). The 
intermediate region near 5 A, however, is a boundary 
zone where most difficulties with macromolecular 
phasing occur (Podjarny & Yonath, 1977; Dorset, 
Kopp, Fryer & Tivol, 1995) and it remains to be seen 
how well the ME formalism can span this region. 
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Although it might be accepted that low-resolution 
phase extensions might be feasible, given the presence 
of an accurate basis phase set from the Fourier 
transform of an electron micrograph, the success of 
true ab initio determinations, demonstrated in this 
paper, was not necessarily expected. It is clear that 
the most success is experienced in the lowest-resolution 
range with some degradation of accuracy occurring as 
the resolution limit is extended. However, for the two 
examples investigated, much of the important structural 
detail is already manifested at about 10A so the 
determinations are still sufficient to discern the essential 
features of the protein without need of an electron 
micrograph. For these procedures to be made more 
effective, however, an efficient and accurate method for 
phase refinement must be found to improve the basis set 
after a given resolution shell is reached. While phase 
annealing has been shown earlier to be useful, the 
density flatness figure of merit monitored with it is not 
always capable of discerning phase changes in favour 
of the most correct value. The challenge of phase 
refinement, therefore must be faced in future work in 
this area. 

Finally, the ME formalism can also use a non- 
uniform prior in the form of an envelope (Bricogne, 
1984); this has been programmed and tested in this 
environment. However, this is an ab initio study and so 
the envelope cannot be considered known a priori but, 
even when it is included, preliminary calculations 
indicate that the method works no better. This is 
probably because the large U magnitudes that we are 
phasing generate sufficient contrast in the centroid 
maps, which makes the use of envelopes unnecessary. 
This may not always be the case, however, and high- 
resolution electron micrographs from sugar-embedded 
or frozen-hydrated preparations could give useful 
envelope information to assist difficult phase-determi- 
nation processes. 

This research was funded in part by grants from the 
Human Frontier Science Program and the National 
Institute of Medical Sciences (GM-46733). 
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